SENIOR CAPSTONE/ SENIOR DESIGN EXPERIENCE

DESIGN AND OPTIMIZATION OF SCOBET PRODUCTION

PURDUE UNIVERSITY®

Agricultural and Biological Engineering

2025

Grace Andrews¹, Alvin Cai², Emma Kane³, Josh Mariani⁴

¹Biological Engineering; ²Biological Engineering; ³Biological Engineering

Project Objective

Develop an experimental design and business plan that optimizes the process production of a SCOBY sorbet (Scobet) by adopting circular methods to minimize discharge and energy consumption

Background

- Scobet converts kombucha waste byproduct into a novel dessert
- Kombucha is a fermented beverage from tea and SCOBY (symbiotic culture of bacteria and yeast)
- Fermented food products are trending in the
 U. S. given their health benefits
- Current digestive health market evaluated at about \$13.53 billion
- CAGR is currently 8.3%
- International foods are growing in popularity, particularly in heavily populated regions
- Production and sales of both kombucha and Scobet maximizes profit
- Based on alternative analysis, the heuristic approach was deemed most appropriate for product manufacturing within each unit operation

Experimentation

Brewing

- 3 tea samples with 3 different brewing parameters were tested for polyphenol content
- Optimal extraction (167 mg/ml) at 85°C and 15 min Fermentation
- Assessed mixed culture growth rate as a function of surface area
- Growth rate is directly proportional to the surface area of the fermentation

Pureeing & Freezing

- Assess probiotic viability changes
- Inoculated MRS with Scobet sample
- 930 MPN/mL pre-puree, 750 MPN/mL post-freeze

Design of Process Operations

Determination of equipment design

- Industrial kettle: V ~ 30 L, t ~ 30 min, P ~ 60 kW
- Fermenter: V ~ 1 bbl, fermentation time: 1 week
- Puree agitator: V ~ 134 L, impeller diameter
 ~0.811 m, P ~ 32.6 kW/batch
- Scraped heat exchanger: A ~ 5m², dynamic freezing time: 5 min, static freezing time: 2.8 hr

Optimization and Controls

Brewing

- Optimization of brew temperature to minimize heat exchange area and steam usage cost
- Optimal brewing conditions: 85°C & 15 minutes
 Fermentation
- Optimization of cost of fermentation as a function of fermentation time
 - Optimal fermentation time: 25 hours

Pureeing

- Optimization of rotational speed to reach desired consistency and reduce power consumption
- Optimal RPM: 400 RPM

Freezing

- Optimization of rotational speed to minimize heat exchanger area
- Optimal rotational speed: 300 RPM

Final Design

- Direct costs: \$29.68/kg product
- Sale price: \$33.26/kg product (for breakeven production)
- Annual yield: 155,818 kg/year
- Annual revenue: \$5.18 million
- Annual cost of production: \$4.53 million
- Total capital investment: \$453,212
- Plant systems: The sole byproducts from the process are tea leaf waste and fruit filtrate which can be converted and reused as:
 - Biofuel for powering the manufacturing plant
- Compost for tea leaf production

Future Works

- Improving the sample size for spectroscopy data of tea extraction
- Specific research into stages of kombucha fermentation for a more robust model
- Rheological analysis of different fruit purees
- More data collection required for change in viable cell counts throughout the processing

